A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain-Computer Interfaces

نویسندگان

  • Kavitha P. Thomas
  • Cuntai Guan
  • Chiew Tong Lau
  • A. Prasad Vinod
  • Kai Keng Ang
چکیده

Event-related desynchronization/synchronization patterns during right/left motor imagery (MI) are effective features for an electroencephalogram-based brain-computer interface (BCI). As MI tasks are subject-specific, selection of subject-specific discriminative frequency components play a vital role in distinguishing these patterns. This paper proposes a new discriminative filter bank (FB) common spatial pattern algorithm to extract subject-specific FB for MI classification. The proposed method enhances the classification accuracy in BCI competition III dataset IVa and competition IV dataset IIb. Compared to the performance offered by the existing FB-based method, the proposed algorithm offers error rate reductions of 17.42% and 8.9% for BCI competition datasets III and IV, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

Discriminative Learning of Propagation and Spatial Pattern for Motor Imagery EEG Analysis

Effective learning and recovery of relevant source brain activity patterns is a major challenge to brain-computer interface using scalp EEG. Various spatial filtering solutions have been developed. Most current methods estimate an instantaneous demixing with the assumption of uncorrelatedness of the source signals. However, recent evidence in neuroscience suggests that multiple brain regions co...

متن کامل

Common Spatio-Time-Frequency Patterns for Motor Imagery-Based Brain Machine Interfaces

For efficient decoding of brain activities in analyzing brain function with an application to brain machine interfacing (BMI), we address a problem of how to determine spatial weights (spatial patterns), bandpass filters (frequency patterns), and time windows (time patterns) by utilizing electroencephalogram (EEG) recordings. To find these parameters, we develop a data-driven criterion that is ...

متن کامل

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Discriminative Common Spatial Pattern Sub-bands Weighting Based on Distinction Sensitive Learning Vector Quantization Method in Motor Imagery Based Brain-computer Interface

Common spatial pattern (CSP) is a method commonly used to enhance the effects of event-related desynchronization and event-related synchronization present in multichannel electroencephalogram-based brain-computer interface (BCI) systems. In the present study, a novel CSP sub-band feature selection has been proposed based on the discriminative information of the features. Besides, a distinction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on bio-medical engineering

دوره 56 11 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009